Summary of an excodeModel
summary-excodeModel-method.RdSummarize a fitted excodeModel at time points where excess-count detection was performed, including expectations, posterior probabilities, p-values, and corresponding thresholds per the model specification.
Arguments
- object
An
excodeModelto summarize.- pars
Character vector of fields to include (e.g.,
"posterior","pval","zscore","date","timepoint","observed","emission","BIC","AIC"); defaults to all.- prob_threshold
Numeric posterior probability threshold used to compute the posterior-based upper bound (
posterior_ub) and flag excess counts (>= threshold); default 0.5.- pval_threshold
Numeric p-value threshold used to compute the p-value-based upper bound (
pval_ub) and flag excess counts (<= threshold); default 0.01.- anscombe_threshold
Numeric threshold on the Anscombe z-score used for signal assessment; default 2.
- maxiter
Integer maximum iterations when estimating the posterior alarm threshold; default 1000.
Value
A data.frame summarizing selected components of the excodeModel (expected values, posterior, p-value, and fit metrics such as AIC/BIC) according to pars.
Examples
data(shadar_df)
res_har_pois <- run_excode(surv_ts = shadar_df, timepoints = 295, distribution = "Poisson",
states = 2, periodic_model = "Harmonic", time_trend = "Linear", set_baseline_state = TRUE)
summary(res_har_pois)
#> posterior0 posterior1 pval zscore date timepoint observed
#> 1 0.8669206 0.1330794 0.1883469 1.141199 2006-08-28 295 6
#> mu0 mu1 BIC AIC
#> 1 3.826315 12.43947 1149.244 1066.034